Degree Sequence of Random Permutation Graphs by Bhaswar B. Bhattacharya

نویسنده

  • BHASWAR B. BHATTACHARYA
چکیده

In this paper, we study the asymptotics of the degree sequence of permutation graphs associated with a sequence of random permutations. The limiting finite-dimensional distributions of the degree proportions are established using results from graph and permutation limit theories. In particular, we show that for a uniform random permutation, the joint distribution of the degree proportions of the vertices labeled nr1 , nr2 , . . . , nrs in the associated permutation graph converges to independent random variables D(r1),D(r2), . . . ,D(rs), where D(ri)∼ Unif(ri ,1 − ri ), for ri ∈ [0,1] and i ∈ {1,2, . . . , s}. Moreover, the degree proportion of the mid-vertex (the vertex labeled n/2) has a central limit theorem, and the minimum degree converges to a Rayleigh distribution after an appropriate scaling. Finally, the asymptotic finite-dimensional distributions of the permutation graph associated with a Mallows random permutation is determined, and interesting phase transitions are observed. Our results extend to other nonuniform measures on permutations as well.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Universal Poisson and Normal Limit Theorems in Graph Coloring Problems with Connections to Extremal Combinatorics

This paper proves limit theorems for the number of monochromatic edges in uniform random colorings of general random graphs. The limit theorems are universal depending solely on the limiting behavior of the ratio of the number of edges in the graph and the number of colors, and works for any graph sequence deterministic or random. The proofs are based on moment calculations which relates to res...

متن کامل

Universal Limit Theorems in Graph Coloring Problems with Connections to Extremal Combinatorics

This paper proves limit theorems for the number of monochromatic edges in uniform random colorings of general random graphs. These can be seen as generalizations of the birthday problem (what is the chance that there are two friends with the same birthday?). It is shown that if the number of colors grows to infinity, the asymptotic distribution is either a Poisson mixture or a Normal depending ...

متن کامل

Universal Limit Theorems in Graph Coloring Problems with Connections to Extremal

This paper proves limit theorems for the number of monochromatic edges in uniform random colorings of general random graphs. These can be seen as generalizations of the birthday problem (what is the chance that there are two friends with the same birthday?). It is shown that if the number of colors grows to infinity, the asymptotic distribution is either a Poisson mixture or a Normal depending ...

متن کامل

Inference in Ising Models

The Ising spin glass is a one-parameter exponential family model for binary data with quadratic sufficient statistic. In this paper, we show that given a single realization from this model, the maximum pseudolikelihood estimate (MPLE) of the natural parameter is √ aN -consistent at a point whenever the log-partition function has order aN in a neighborhood of that point. This gives consistency r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017